Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network.
نویسندگان
چکیده
Distinct motor patterns are selected from a multifunctional neuronal network by activation of different modulatory projection neurons. Subsets of these projection neurons can contain the same neuromodulator(s), yet little is known about the relative influence of such neurons on network activity. We have addressed this issue in the stomatogastric nervous system of the crab Cancer borealis. Within this system, there is a neuronal network in the stomatogastric ganglion (STG) that produces many versions of the pyloric and gastric mill rhythms. These different rhythms result from activation of different projection neurons that innervate the STG from neighboring ganglia and modulate STG network activity. Three pairs of these projection neurons contain the neuropeptide proctolin. These include the previously identified modulatory proctolin neuron and modulatory commissural neuron 1 (MCN1) and the newly identified modulatory commissural neuron 7 (MCN7). We document here that each of these neurons contains a unique complement of cotransmitters and that each of these neurons elicits a distinct version of the pyloric motor pattern. Moreover, only one of them (MCN1) also elicits a gastric mill rhythm. The MCN7-elicited pyloric rhythm includes a pivotal switch by one STG network neuron from playing a minor to a major role in motor pattern generation. Therefore, modulatory neurons that share a peptide transmitter can elicit distinct motor patterns from a common target network.
منابع مشابه
Projection neurons with shared cotransmitters elicit different motor patterns from the same neural circuit.
Specificity in the actions of different modulatory neurons is often attributed to their having distinct cotransmitter complements. We are assessing the validity of this hypothesis with the stomatogastric nervous system of the crab Cancer borealis. In this nervous system, the stomatogastric ganglion (STG) contains a multifunctional network that generates the gastric mill and pyloric rhythms. Two...
متن کاملDistinct functions for cotransmitters mediating motor pattern selection.
Motor patterns are selected from multifunctional networks by selective activation of different projection neurons, many of which contain multiple transmitters. Little is known about how any individual projection neuron uses its cotransmitters to select a motor pattern. We address this issue by using the stomatogastric ganglion (STG) of the crab Cancer borealis, which contains a neuronal network...
متن کاملModulators with convergent cellular actions elicit distinct circuit outputs.
Six neuromodulators [proctolin, Cancer borealis tachykinin-related peptide Ia, crustacean cardioactive peptide (CCAP), red pigment-concentrating hormone, TNRNFLRFamide, and pilocarpine] converge onto the same voltage-dependent inward current in stomatogastric ganglion (STG) neurons of the crab C. borealis. We show here that each of these modulators acts on a distinct subset of pyloric network n...
متن کاملMotor pattern selection via inhibition of parallel pathways.
Motor pattern selection from a multifunctional neural network often results from direct synaptic and modulatory actions of different projection neurons onto neural network components. Less well documented is the presence and function of interactions among distinct projection neurons innervating the same network. In the stomatogastric nervous system of the crab Cancer borealis, several distinct ...
متن کاملDifferent sensory systems share projection neurons but elicit distinct motor patterns.
Considerable research has focused on issues pertaining to sensorimotor integration, but in most systems precise information remains unavailable regarding the specific pathways by which different sensory systems regulate any single central pattern-generating circuit. We address this issue by determining how two muscle stretch-sensitive neurons, the gastropyloric receptor neurons (GPRs), influenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 13 شماره
صفحات -
تاریخ انتشار 1999